Датчик кислорода (Лямбда-зонд). (Р)

Зачем нужен лямбда зонд

Многие считают, что лямбда зонд (он же датчик кислорода) является чуть ли не главнейшим датчиком в системе управления двигателем. Но на самом же деле это очередная дань экологии. И не в том смысле, что он напрямую что-то делает полезное для экологии.

Лямбда зонд устанавливается для полноценной работы каталитического нейтрализатора! Дело в том, что катализатор работает с максимальным КПД только тогда, когда смесь близка к стехиометрии, то есть, топливовоздушная смесь состоит из воздуха и топлива в соотношении 14,7 кг воздуха на 1 кг топлива.

Как только это соотношение изменяется в ту или иную сторону, тогда катализатор снижает свою производительность и не в полной мере выполняет свою задачу, что пагубно влияет на экологию.

Поэтому лямбда зонд в первую очередь призван следить за стехиометрическим составом смеси ради полноценной работы катализатора.

К слову сказать, показания лямбда зонда учитываются блоком управления двигателем (ЭБУ) не всегда. Допустим, при разгоне двигателю необходима более обогащенная смесь, поэтому в этот момент ЭБУ не учитывает сигнал с лямбда зонда. Аналогичная картина происходит и при торможении двигателем.

Также стоит отметить, что хоть ЭБУ и не учитывает сигнал в этот момент, но всё равно лямбда зонд вырабатывает сигнал, который мы можем видеть в диагностической программе. И по этому сигналу можно многое сказать о состоянии системы топливоподачи и прочих составляющих работы двигателя. Это мы ниже наглядно рассмотрим на скриншотах.

Как работает лямбда зонд

Тут тоже много заблуждений. Даже Википедия дает не совсем корректную информацию. Вот цитата:”Лямбда-зонд

(
λ-зонд
) — датчик остаточного кислорода. Позволяет оценивать количество оставшегося несгоревшего топлива либо кислорода в выхлопных газах.”

Получилось два предложения, которые противоречат друг другу и ещё больше запутывают начинающих автомобилистов.

Так что он оценивает? Остаточный кислород? Или остаточное несгоревшее топливо?

На самом деле лямбда зонд понятия не имеет сколько там несгоревшего топлива! Потому что он предназначен не для этого. И даже не для определения количества остаточного кислорода в выхлопных газах.

Он всего лишь сравнивает количество кислорода в выхлопных газах с количеством кислорода в окружающей среде в том месте, где находится автомобиль. Ведь мы знаем, что количество кислорода в окружающей среде не везде одинаково.

В общем, на простом языке – Лямбда зонд сравнивает количество кислорода в окружающей среде с количеством кислорода в выхлопных газах! По этой разности можно судить сколько кислорода сгорело в камере сгорания двигателя. Если кислорода в выхлопных газах много, значит смесь была обеднена и в следующем цикле ЭБУ прибавит топлива, чтобы сгорело больше кислорода.

Этот цикл повторяется постоянно и топливовоздушная смесь благодаря этому находится в районе стехиометрии. Именно в РАЙОНЕ стехиометрии – чуть выше, чуть ниже, чуть выше, чуть ниже. На графиках это выглядит как пила

Посредине этой пилы, как раз и есть стехиометрия. Именно по этому сигналу происходит топливная коррекция и выглядит она, естественно, тоже, как пила

Как видим, блок управления двигателем выполняет топливные коррекции строго по сигналу лямбда зонда. Всё как бы в зеркальном отражении – сигнал лямбда зонда вниз (обеднённая смесь), а коррекции сразу вверх (поддать топлива). И так происходит бесконечно, пока необходима смесь, близкая к стехиометрии.

Думаю, должно быть понятно.

Но ещё раз подчеркну, что лямбда зонд не видит топлива, он видит только кислород! Поэтому он и называется датчиком кислорода! Естественно, он никак не может определить несгоревшее топливо. Никак! Он для этого не предназначен.

Почему так важно это понимать?

Представьте ситуацию, если на авто прогорит прокладка выпускного коллектора. Так как выхлопные газы имеют пульсирующий характер, то через эту прокладку будут не только выходить выхлопные газы, но и засасываться воздух из окружающей среды. Лямбда зонд, естественно, увидит этот кислород и сообщит об этом. ЭБУ неизбежно определит, что смесь слишком обеднена и загонит коррекции далеко в плюс, добавляя топлива. Но лямбда зонд не умеет определять топливо, он видит только кислород! И сообщает только о большом количестве кислорода! ЭБУ в этой ситуации будет добавлять топливо до того момента, пока коррекции не дойдут до своего крайнего значения. В этот момент вылезет ошибка о бедной смеси и невозможности блока управления исправить ситуацию своими силами и он просит о помощи человека разобраться в этой проблеме.

Первые промежуточные выводы: Лямбда зонд установлен в систему управления двигателем для поддержания топливовоздушной смеси в районе стехиометрии для полноценной работы катализатора и сравнивает содержание кислорода в выхлопных газах с содержанием кислорода в окружающей среде. Исключительно кислорода!

АНАТОМИЯ ЗЛА

Датчики кислорода бывают двух видов: триггерный (скачкообразный сигнал) и широкополосный. Чувствительный элемент триггерного состоит из керамического корпуса (двуокись циркония), покрытого снаружи и изнутри электродами. Они изготовлены напылением слоя газопроницаемой платины и могут проводить ионы кислорода при температуре от 300 ºC. Чтобы достичь ее быстрее, в датчик встроен нагреватель. Внешняя часть элемента находится в потоке отработавших газов, а внутренняя — в среде окружающего воздуха.

Между электродами возникает разность потенциалов: в зависимости от доли кислорода в ОГ, от 0,1 В (бедная смесь) до 0,9 В (богатая смесь). При переходе от богатой смеси к бедной и наоборот датчик передает скачок сигнала. По нему ЭБУ и корректирует впрыск топлива. За счет этого он постоянно регулирует смесь для эффективной работы нейтрализатора.

Широкополосный датчик преобразует содержание кислорода в ОГ в значение тока. Он может измерять коэффициент избытка воздуха λ в диапазоне 0,7–4,0. При этом его сигнал непрерывный и более четкий. Это позволяет использовать его в дизельном моторе, который работает на очень бедных смесях. Датчик состоит из гальванического элемента Нернста и элемента кислородной накачки. Оба изготовлены из двуокиси циркония с напылением пористой платины. Между элементами есть диффузионный зазор (область измерения), в который поступают ОГ. Элемент Нернста устроен и работает как триггерный кислородный датчик, выдавая сигнал напряжения. По нему насосная ячейка управляет подачей кислорода в область измерения так, чтобы коэффициент избытка воздуха в ней всегда был равен единице. При работе двигателя на бедных смесях (большое содержание кислорода) насосный элемент откачивает ионы кислорода из области измерения. При работе двигателя на богатых смесях (низкое содержание кислорода) — наоборот. При этом элемент потребляет ток: положительный при откачке и отрицательный при накачке. По этой величине блок управления двигателем и определяет коэффициент избытка воздуха в ОГ.

Как правило, перед нейтрализатором ставят триггерный датчик. Но когда нужно очень точное регулирование смеси, все чаще используют широкополосный. А вот за нейтрализатором всегда идет более простой триггерный, так как он следит только за его работой и на двигатель не влияет.

Где установлен лямбда зонд

Лямбда зонд устанавливается в системе выпуска отработанных газов перед каталитическим нейтрализатором

Некоторые производители могут устанавливать несколько катализаторов, и, естественно, несколько лямбда зондов.

Лямбда зонды, устанавливаемые перед катализатором называются управляющими, так как по их сигналу происходит управление топливными коррекциями.

Но борьба за экологию не стоит на месте, поэтому автопроизводителей обязали научить блоки управления двигателем следить и диагностировать работу лямбда зонда и катализатора. Поэтому на более поздних автомобилях появились дополнительные лямбда зонды, которые установлены после катализатора. Они получили название, как это не банально звучит, – диагностические.

Но лямбда зонд имеет один недостаток – он работает только разогретым. Поэтому сразу после запуска двигателя этот датчик не участвует в работе системы управления двигателем, а топливо подаётся по таблице, заложенной в память ЭБУ и по накопленным коррекциям, записанным в адаптивную память ЭБУ

После прогрева датчика он начинает вырабатывать сигнал и ЭБУ включает его в работу, переводя систему топливоподачи в замкнутый контур. Она ещё называется топливоподачей с обратной связью по датчику кислорода.

То есть, пока датчик холодный, то стехиометрия не регулируется.

Данный факт оказался неприемлемым в постоянной борьбе за экологию. Поэтому производители были вынуждены установить в лямбда зонд автономный электрический подогрев. Он позволяет в разы уменьшить время прогрева датчика до рабочей температуры.

Работу прогрева мы также можем видеть в диагностической программе

Неисправности лямбда зонда: признаки и причины

Выход из строя лямбда зонда может повлечь за собой сбой в работе топливной системы, увеличение расхода топлива, уменьшение тяги и др. Сбой в работе топливной системы приведет к снижению эксплуатационных характеристик двигателя автомобиля: пропала мощность, ухудшение динамики и т. д.

Основные признаки неисправности лямбда зонда:

Неисправность лямбда зонда, причины:

Еще стоит отметить, что поломка датчика кислорода может привести к собою в работе ЕGR cиcтeмы (нарушение функциональности вакуумного клапана системы).

Как проверить лямбда зонд

Проверить лямбда зонд не так сложно, как кажется, но важно понимать постоянную дилемму автодиагноста – некорректная работа датчика вызвана его неисправностью или он так реагирует на какие-то некорректные процессы в двигателе или в системе управления двигателем?

Другими словами, если сигнал лямбда зонда указывает на обедненную смесь, то необходимо разобраться, может смесь действительно обеднена или может произошла разгерметизация выпускного тракта перед лямбда зондом, о которой я писал выше. То есть, в таких показаниях виноват сам датчик или он показывает реальную картину происходящего. Это самый сложный и самый ответственный этап, потому что именно он определяет путь дальнейших действий.

А бывают ситуации и более сложные, когда проблема не одна. Допустим, и выпускной коллектор подсасывает и топливный насос не дает достаточного давления. И то, и другое будет влиять на показания лямбда зонда.

Поэтому внимание и некоторая фантазия поможет быстро решить проблему и найти виновника.

Многие пытаются проверить лямбда зонд мультиметром. Можно ли его так проверить? Конечно можно, по закону это не запрещено

Вот только полученная информация таким способом мало что нам даст. Да, мы увидим изменяющееся напряжение, по которому можно судить, что датчик работает. А вот как он работает угадать сложно.

Поэтому наиболее лучший и бюджетный вариант проверки – это купить диагностический адаптер для своего автомобиля, который стоит не так уж и дорого. И установить на ноутбук какую-нибудь диагностическую программу.

Лично мой выбор:

  • адаптер для диагностики за несколько долларов
  • бесплатная диагностическая программа для автомобилей Шевроле. Если у Вас другое авто, то можно найти в сети программу и для Вашего авто
  • если никогда с этим не сталкивались, тогда можно посмотреть пошаговую инструкцию по началу диагностики своими руками

Данным способом мы сможем многое сказать не только о состоянии лямбда зонда, но и о многом другом.

Идеальный сигнал лямбда зонда имеет пилообразную форму с нижним значением 0.1 В и с верхним значением 0.9 В, а также с частотой переключения не более 2 секунд

Какие могут быть неисправности у лямбда зонда:

  • слабая амплитуда переключений
  • низкая частота переключений
  • обрыв или полный отказ датчика
  • отсутствие переключений
  • немыслимые значения амплитуды

Если не понятно, то сейчас станет всё понятно.

Как определить частоту переключений? Вот я блеснул творчеством и нарисовал. Сетка на графике имеет размер 2 секунды (зеленый цвет). Два соседних верхних значения показаний лямбда зонда укладываются в этот промежуток (2 секунды). Значит датчик в норме

Я подобрал Вам несколько проблемных графиков для наглядных примеров.

Вот пример уставшего датчика, у которого время переключения составляет почти 10 секунд

Решение проблемы: Замена лямбда зонда

Следующий график показывает неисправный лямбда зонд, у которого вообще нет переключений. Просто прямая линия, которая гуляет то вверх, то вниз. Такое я пару раз наблюдал после того, как обрабатывали разъем лямбда зонда WD-40. Поэтому я всегда советую крепко подумать, прежде чем проводить похожие процедуры. К слову сказать, в большинстве случаев через пару недель датчик приходит в норму и начинает практически корректно работать.

Решение проблемы: Осматриваем разъем датчика на наличие конденсата и прочих нежелательных вещей. Если всё в норме, тогда меняем лямбда зонд.

Следующий случай показывает, как уставший лямбда зонд не выдает необходимую амплитуду 0.1-0.9 В. Вместо этого верхний сигнал датчика составляет примерно 660 мВ

А нижний не опускается ниже 330 мВ

Решение проблемы: Отключаем разъем от датчика. Если видим прямую линию 415 мВ, тогда меняем датчик. Если не видим прямую линию 415 мВ, тогда обращаем внимание на ЭБУ

Вот ещё один очень интересный момент, который мне доводилось видеть неоднократно. Лямбда зонд сходит с ума и вместо положенных 0.9 В выдаёт почти 5 В!

Сам датчик не может выработать такой сигнал. Что же происходит? Ответ прост – сигнальная цепь датчика периодически замыкает на цепь нагрева и подтягивает оттуда напряжение

Как видим, бывает и такое. Причем иногда выявить это довольно сложно, так как замыкание носит кратковременный и непостоянный характер. Приходится по несколько дней ездить с ноутбуком, чтобы поймать этот момент.

Решение проблемы: Проверяем наличие замыкания в проводке. Если всё отлично, тогда меняем лямбда зонд

Вот такие основные неисправности лямбда зондов встречаются чаще всего. Поэтому, если Вы наблюдаете что-то похожее на своих графиках, тогда стоит принимать меры.

Но на этом диагностика лямбда зонда не заканчивается. Вернее не диагностика самого лямбда зонда, а диагностика по лямбда зонду.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]